AD=-A08S 517

UNCLASSIFIED

VIRGINIA POLYTECHNIC INST ANO STATE UNIV WASHINGTON ==ETC F/¢ 9/2
CONVERTING DEC=10 SIMULA PROGRAMS TO CMS SIMULA.(U)

JUL 79 R J ORGASS AFOSR=79=0021
VPI/SU=Ti=T79=7 AFOSR=TR=80-0847 N

i, M

N

‘ ML:;.J-‘TR'—.- s J-~.p44 7 /;2) " EXTENSION DIVISION
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE C e -~ P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA ! // Washmgton. D. C. 20041

PO (703 471-4600
¢ E

s ’-;.;.:-'. 3% K> e 4

;ONVERTING DEC- -4 SIMULA PROGRAMS)
- TO CMS SIMULA*“T" -

S— /(/

/“jRichard J./Orgass \ \/#J7ASU’11A‘
‘\iJ fgg;niéal MemoraLéun No. 79-7 r-)—r-‘c::

- T L‘.CTE &
T Julm79[o g
| g N
N N iamme s i \ u“ 4y JBO Co
. —_———— P i P - 5 JES) X
_ - ' . /(i} - ‘ I _] . -
ABSTRACT A

A collection of advice and directions for
mcving SIMULA programs is given.] —

——

* wWork supported in part by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR-

79-0021.

+ The information in this document is subject to change with-
out notice. The editor, the authors, Virginia Polytechnic
Institute and State University, the Commonwealth of Virginia

and the United States Government assume no responsibility
for errors that may be present in this document or in the

programs described here.

Approved lor puﬁo release;

4yrl 73 Z distribution unluuod.ﬂb

Located st Dulles [ntsrnations! Airport—400 West Service Road

R

AP
istri
A. D' !

fechnic.l

“ v

Copyright, 1979
by
Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-7, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

vea om0 (ARSC)

s 2 oand 18
12 (7b)e

s Orficer

-~

This note . reports on the writer”s experience moving DEC-10
SIMULA programs to CMS and executing the programs with CMS
SIMULA. With minor exceptions described below,. the languages
implemented by the two compilers is the same and this makes the
transfer of SIMULA programs very easy. In contrast, it is very
difficult to transfer Fortran programs from a DEC-10 to CMS.

The two main sources of difficulty in transferring programs
are the differences in the character set and file system of the
two systems and the fact that CMS lacks many of the capabilities
that TOPS~10 users take for granted. The directions for moving
DEC-10 SIMULA programs to IBM SIMULA that are provided with
release 3 refer to older versions of 1IBM SIMULA and it 1is now
possible to preserve most of the separately compiled classes and
procedures while moving programs to CMS SIMULA.

The discussion that follows assumes that programs running
under release 3 of DEC-10 SIMULA are to be moved to CMS SIMULA,
Version 7.00, from Imperial College of Science and Technology.
Earlier versions require some additional work as described below.

1. Changes to the Program Text

This section contains information that 1is useful when prepar-
ing DEC-10 SIMULA for transfer to CMS SIMULA. Some of this
information was obtained from Part III of the DEC-10 SIMULA Hand-
book and other items were learned by trial and error. The proce-
dure suggested might best be characterized by the statement "I
wish I knew enough to do it this way."

There are a few differences in the syntax of SIMULA in the two
implementations. Since the particular characters also cause
problems when transferring files, it is best to make changes on
the DEC-10. The following changes to the source text should be
made:

(1) Replace all occurrences of square brackets, (and], with
parentheses, (and). (The square brackets in text and
character constants might just as well be changed to paren-
theses becauses they will be transformed into other charac-
ters in the ASCII to EBCDIC translation. Editing will be
needed in any case.]

(2) Replace all occurrences of \= with NE. IBM SIMULA uses ~=
or NE and there are difficulties with ~ when moving text
files.

{(3) Replace all occurrences of \ with NOT.

(4) CMS SIMULA does not accept | as an abbreviation for COMMENT.
Replace all such occurrences with COMMENT.

(5) While -the source files are in transit they will not have a
name associated with them so it is a good idea to add a com-
ment with the file name at the beginning of each file.

(6) CMS SIMULA does not concatenate text constants when they
follow each other. If the program contains

“abc" "def"
replace this text with

"abcdef"
or

conc?2 ("abec","def")

(7) The DEC-10 library procedure conc is not available in CMS.
Replace calls to conc with nested calls to conc2. (It will
be necessary to compile the SIMULA source for conc2 as given
in Part III of the DEC-10 SIMULA Handbook.)

(8) Remove all line numbers from files and expand tabs. Here is
an easy way to do this:

.r pip
all:.sim/w/x/n=all:*.sim
i"c

The files are still not ready for transfer. CMS SIMULA
expects its input as 80 column records and reads only columns
1-72. (The whole CMS environment is directed to card images and
the SIMULA compiler follows the conventions.) The easiest way to
change the record length of your source files is to use SIMED.
Version 7.00 of CMS SIMULA supports upper and lower case program
text in the same way as the DEC-10 implementation so it 1is not
necessary to modify the program text. If you are going to use an
earlier version, all program text except comments and character
and text constants must be in upper case; SIMED can perform this
translation.

Although option statemcats are not used by the CMS compiler,
it is best to 1leave them in the source text for modification on
CMS. Some of the option switches are replaced by command lines
in the source text and others are replaced by options in the com-
mand that invokes the compiler. It is quite straightforward to
replace these option statements using CMS when all the documenta-
tion is immediately at hand.

The external compilation facility of CMS SIMULA is in some
ways more genaral than the DEC-10 version and in other ways more

difficult to use because of the CMS file system. The DEC-10
statement

EXTERNAL CLASS mumble=FOO.SIM;
should be replaced by the statement
EXTERNAL CLASS mumble=FO0O0;

It is not necessary to have external statements in all parts of a
program that implicitly reference other separately compiled parts
of a program. This means that many of the external statements in
DEC-10 SIMULA programs can be removed. Retain the innermost
external statement (that is, in the earliest program part to be
compiled) and delete all of the copies in containing (or later
compiled) parts of the program. External declarations obey the
usual scope rules in CMS SIMULA. The order of compilation rules
of the DEC-10 implementation apply to the CMS implementation but
the compiler does not do all the checking that is done by the
DEC-10 compiler.

Some aspects of separate compilation of classes are more dif-
ficult in CMS. If your program text (in file foo) 1is of the
form,

EXTERNAL CLASS mumble;
mumble CLASS foo:
BEGIN

END of foo;

the class mumble must be compiled using the CMS command
simula mumble (extern c

and then the class foo is compiled using the CMS commands:

filedef mumble disk mumble simclass
simula foo

On the other hand, if your program text (in file foo) is:

BEGIN
EXTERNAL CLASS mumble;
mumble CLASS foo;
BEGIN
END of foo;

END of program.

or

4

. Sl G

e

- . —

BEGIN
EXTERNAL CLASS mumble;
mumble BEGIN
END of'mumble block;

End of program.

then mumble is compiled as above but foo is compiled with the CMS
command:

simula foo (class mumble
(The filedef command is not needed.)

External procedures are compiled with the extern p option and
thereafter can be used as needed with external declarations.
There is no level number associated with a separately compiled
procedure or class.

In one respect, the separate compilation facility of CMsS
SIMULA is more restrictive. Using the DEC-10 compiler, it is
possible to compile the following class

EXTERNAL CLASS video file=VIDFIL.SIM;
CLASS slr_parser(f); REF(video_file)f;
BEGIN

END of slr_parser;

This class cannot be separately compiled in CMS SIMULA because
the parameters of a class must be either a basic type of SIMULA
(e.g., integer, character, text, etc.) or be declared in the same
source file.

2. Transferring Files

The program CHANGE supplied by many TOPS-10 installation is a
reasonably reliable way of writing files on tape for transfer
from a DEC-10 to an IBM machine. A number of different options
were tried and the procedure described below appears to be the
least painful.

TOPS-10 users are accustomed to thinking of text files as a
sequence of characters divided into records by <cr><lf>; this
view is quite useless in CMS. The CMS file system views text
files as a sequence of records, each of a fixed 1length called
LRECL. This writer wasted a great deal of time trying to avoid
this conclusion and strongly recommends adopting the CMS view of
a file in spite of an enormous number of unnecessary blanks.

YRR =~ -

CHANGE should be used to write SIMULA source files
(reformatted as described above) on an unlabeled ASCII tape. The
files should be written as fixed length records with 80 column
records in 8-~bit ASCII with high order bit 0. The ASCII to
EBCDIC translation performed by CHANGE has many strange proper-
ties which include mapping lower case letters into upper case and
confusing special characters. It°s a good idea to write several
repetitions of the file sequence on the tape in case of problems
with the tape -- different brands of drives will write and read
the tape and this aggravates the usual problems.

Tapes written in this way can be read using IBEDIT. A CMS
EXEC for reading the tapes can be obtained from the author.

There are a few annoying properties of the ASCII to EBCDIC
translation performed by IBEDIT: (1) There are two EBCDIC codes
for each curly bracket ({ and }). IBEDIT selects the code which
is not printed by the TN print train and which is not the code
selected by the translate table used to support ASCII terminals.
(2) There are three EBCDIC characters that correspond to verti-
cal line (ASCII 124) and IBEDIT choses one that is not printed by
the T™N train or on an ASCII terminal. (3) A similar statement
applies to ~ (ASCII 126). (4) The backslash (\, ASCII 92) is
translated into a completely unprintable character.

A CMS SIMULA program to correct this translation may be
obtained from the author.

3. Programming Problems

CMS SIMULA imposes the Common Base restriction on text parame-
ters passed by name while the DEC-10 implementation is more
liberal. The following sketch of a procedure will execute cor-
rectly in DEC-10 SIMULA when called with a text constant as
actual parameter:

PROCEDURE mumble(t); NAME t; TEXT t;
BEGIN

x := Copy(t);

i := t.length

Yy := t.sub(l,4)

END of mumble;

In CMS SIMULA, a run time error will occur. An ugly but easy

patch will avoid this problem:

PROCEDURE mumble{a); NAME a; TEXT a;
BEGIN

TEXT t;

<declarations>

t :- Blanks(200);

t := a;

t :- t.strip;

<remainder of procedure body as above>
END of mumble;

The CMS environment imposes severe restrictions on interactive
programs which must be dealt with in the program. Note that
these are CMS restrictions which are enforced for all programs
and SIMULA must comply.

In CMS, an empty line is an end-of-file. Therefore, there is
no easy way to distinquish between an empty line of input and "2,
This means that the code

Sysin.Inimage;
IF Sysin.Image.Strip = NOTEXT

THEN...

ELSE...

will not work unless the user types one or more blanks followed
by <cr>; 1it’s very easy to forget the blank. If the blank is
forgotten,

Sysin.Image.Sub(1,2) = "/*"
is true and the next read will cause an error termination.

The need for spaces when going through a long sequence of
questions where the default answer is selected by an empty line
is, at best, annoying and often leads to unexpected error termi-
nations. This writer found it useful to treat end-of-file as an
empty line. This requires reopening the terminal file:

i := Sysin.Image.Length;
Sysin.Close;
sysin.Open(Blanks(i));

In T™OPS-~10, a file specification, €.g9.,
STDN:SIMED.DAT([1000,237], completely describes a file in all
places and at all times. One can read a file specification from
the terminal and then open the file:

Quttext("Input File: ");

Breakoutimage;

Inimage;

input_file :- NEW Infile(Sysin.Image.Strip);
input_file.Open(Blanks(n));

-6-

e e — - - . e i -

If something goes wrong, SIMDDT will provide for recovery.

In CMS, the file specification, e.g., SIMED DATA A identifies
a file only in the user”s directory. This name cannot be used to
directly read the file; a second name, called the DDNAME is
needed! A partial solution to this problem is the following
code:

EXTERNAL ASSEMBLY PROCEDURE cmscommand;
Outtext("Input File:"):
Outimage; Outimage;
dd_name :- get_dd name;
filedef :- conc2("FILEDEF ",dd_name);
filedef :- conc2(filedef, "DISK ")~
filedef "- conc2(filedef, Sysin.Image.Strip);
cmscommand (filedef,return_code) ;
IF return_code = 0
THEN BEGIN
input file:-NEW Infile (dd name);
input_file.Open(Blanks(n)Y
END;
ELSE < obtain correct file specification>

This code will work if the file exists but there will still be a
run time error termination if the file does not exist. A second
call on cmscommand using the STATE command of CMS can check on
the existence of the file.

In the above discussion, get_dd_name is a text procedure that
returns a unique valid DDNAME at each call.

The important thing to notice is that there is no error recov-~
ery via SIMDDT; the program must catch all errors, There are
further details concerning LRECL and RECFM parameters for the
FILEDEF command that are not discussed here. The CMS Command and
Macro Reference Manual has a clear discussion.

TOPS-10 wusers will f£find this very crude and complicated.
Please don“t blame SIMULA -- this is CMS. The input/output
procedures in CMS SIMULA are far better than those available in
Fortran and PL/I. It is fairly straightforward to read files
from SIMULA programs while it is impossible to read the same
files from PL/I or Fortran programs!

Finally, a warning. In all IBM SIMULA versions before 7.00,
the system procedure Letter treats only upper case letters as
letters. In these earlier versions, the expression Letter(“a”)
has the value FALSE.

4. Additional Help

The author has written a number of programs to facilitate the
transfer of SIMULA programs from a DEC-10 to CMS. The properties
of these programs are summarized below and more information may
be obtained by writing to the author.

A technical memorandum, Transferring Files to an IBM Machine,
gives directions for preparing files for transfer and for writing
tapes. Source listings of APLSF and SAIL programs that are
described in this memo are available. The programs are not
available in machine readable form.

A CMS EXEC to read unlabeled ASCII tapes via an MVS batch job
has been used extensively. It is a bit awkward to use but per-
forms the job quite satisfactorily. A listing of the EXEC and a
brief help file are available.

A CMS SIMULA program to correct the ASCII to EBCDIC transla-
tion performed by IBEDIT together with a help file is available,
Paper copy or a CMS dump tape are available.

The DEC-10 SIMULA program SIMED has been modified for use with
CMS SIMULA. Paper copy or a CMS dump tape are available.

A SIMULA class DIALOG that deals with the problems described
above and also contains many of the procedures from the DEC-10
SIMULA library is available. The documentation includes a tech-
nical memorandum and a help file. The code is available on paper
or a CMS dump tape.

LU SR PR

e

Approved for public release; distribution unlimited.

: : - -
' READ INSTRUC T1NS
REPORT DOCUMENTATION PAGE] HEFORE COMPLETING FOCRMY
1 REPCZRT NUMBER 2 GONVY ACZZEISION NO.‘ 3 REZPIENT G TATA 25 8% MAFR
TN ™D 2 .
AFCIX-TR- 890-0447 4 ¢ ooy
& TITLE ant Sub!itie) T j 5 YVPE 3F REPORT § PER, T - .ER
CONVERTING DEC~10 SINULA PROGRAMS TO CMS SINULA Interinm
6 PERFORMING 0I5 REPIRT & _M3ER
7 AJUTHOR s, 8 CONTRACT OR GRANT NUMAER s
Richard J. Orgass
AFOSR 79-0021
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. P:ganu ELEMENT PROJE ST Tasx
v AREA 8 WORK UNIT NUMBERS .
Virginia Polytechnic Inst. £ State University
Department of Computer Science
washington, DC 20041 61102F 2304/ A2
1. ZONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
. . . . July 1979
Alr Force Office of Scientific Research/NM 3 s
. , . -, NUMBER OF PASES
Bolling AFB, Wwashington, DC 20232 10 i
14 MONITORING AGENCY NAME & ADDRESS/ i different from Contrelling Ottice) 15, SECURITY CLASS f thes rep e
UNCLASSTYFI®D
.
15a DECLASSIFICAT 24 DOw% RADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) - -

17.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diflerent from Report)

SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identify by block number)

ABSTRACT (Continue on reverse side {f neceasary and identily by dlock number)

A collection of advice and directions for moving SIMULA programs is given.

oD ,

FORM

JAN 73 EDITION OF 1 NOV 65 |5 OBSOLETE

1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

